A multi-class classification strategy for Fisher scores: Application to signer independent sign language recognition

نویسندگان

  • Oya Aran
  • Lale Akarun
چکیده

Fisher kernels combine the powers of discriminative and generative classifiers by mapping the variable-length sequences to a new fixed length feature space, called the Fisher score space. The mapping is based on a single generative model and the classifier is intrinsically binary. We propose a strategy that applies a multiclass classification on each Fisher score space and combines the decisions of multiclass classifiers. We experimentally show that the Fisher scores of one class provide discriminative information for the other classes as well. We compare several multiclass classification strategies for Fisher scores generated from the Hidden Markov Models (HMMs) of sign sequences. The proposed multi-class classification strategy increases the classification accuracy in comparison with the state of the art strategies based on combining binary classifiers. To reduce the computational complexity of the Fisher score extraction and the training phases, we also propose a score space selection method and show that, similar or even higher accuracies can be obtained by using only a subset of the score spaces. Based on the proposed score space selection method, a signer adaptation technique is also presented that does not require any re-training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Visual Recognition of Isolated Swedish Sign Language Signs

We present a method for recognition of isolated Swedish Sign Language signs. The method will be used in a game intended to help children training signing at home, as a complement to training with a teacher. The target group is not primarily deaf children, but children with language disorders. Using sign language as a support in conversation has been shown to greatly stimulate the speech develop...

متن کامل

Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers

This work presents a statistical recognition approach performing large vocabulary continuous sign language recognition across different signers. Automatic sign language recognition is currently evolving from artificial lab-generated data to ’real-life’ data. To the best of our knowledge, this is the first time system design on a large data set with true focus on real-life applicability is thoro...

متن کامل

A Chinese sign language recognition system based on SOFM/SRN/HMM

In sign language recognition (SLR), the major challenges now are developing methods that solve signer-independent continuous sign problems. In this paper, SOFM/HMM is first presented for modeling signer-independent isolated signs. The proposed method uses the self-organizing feature maps (SOFM) as different signers’ feature extractor for continuous hidden Markov models (HMM) so as to transform ...

متن کامل

Iterative Reference Driven Metric Learning for Signer Independent Isolated Sign Language Recognition

Sign language recognition(SLR) is an interesting but difficult problem. One of the biggest challenges comes from the complex inter-signer variations. To address this problem, the basic idea in this paper is to learn a generic model which is robust to different signers. This generic model contains a group of sign references and a corresponding distance metric. The references are constructed by s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010